An Atomistic-to-Continuum Coupling Method for Heat Transfer in Solids
نویسنده
چکیده
In this work, we present a seamless, energy-conserving method to couple atomistic and continuum representations of a temperature field in a material. This technique allows a molecular dynamics simulation to be used in localized regions of the computational domain, surrounded and overlaid by a continuum finite element representation. Thermal energy can pass between the two regions in either direction, making larger simulations of nanoscale thermal processes possible. We discuss theoretical developments and numerical implementation details. In addition, we present and analyze a set of representative simulations.
منابع مشابه
A priori error analysis of two force-based atomistic/continuum models of a periodic chain
The force-based quasicontinuum (QCF) approximation is a nonconservative atomistic/continuum hybrid model for the simulation of defects in crystals. We present an a priori error analysis of the QCF method, applied to a one-dimensional periodic chain, that is valid for an arbitrary interaction range, large deformations, and takes coarse-graining into account. Our main tool in this analysis is a n...
متن کاملEffects of variations in magnetic Reynolds number on magnetic field distribution in electrically conducting fluid under magnetohydrodynamic natural convection
In this study the effect of magnetic Reynolds number variation on magnetic distribution of natural convection heat transfer in an enclosure is numerically investigated. The geometry is a two dimensional enclosure which the left wall is hot, the right wall is cold and the top and bottom walls are adiabatic. Fluid is molten sodium with Pr=0.01 and natural convection heat transfer for Rayleigh num...
متن کاملStress-based Atomistic/continuum Coupling: a New Variant of the Quasicontinuum Approximation
The force-based quasicontinuum (QCF) approximation is the principle that lies behind the most commonly used atomistic/continuum hybrid models for crystalline solids. Recent analyses have shown some potential pitfalls of the QCF method, particularly the lack of positive definiteness of the linearized QCF operator and the lack of uniform stability as the number of atoms tends to infinity. We deri...
متن کاملA multiscale coupling method for the modeling of dynamics of solids with application to brittle cracks
We present a multiscale model for numerical simulations of dynamics of crystalline solids. The method combines the continuum nonlinear elasto-dynamics model, which models the stress waves and physical loading conditions, and molecular dynamics model, which provides the nonlinear constitutive relation and resolves the atomic structures near local defects. The coupling of the two models is achiev...
متن کاملA truly meshless method formulation for analysis of non-Fourier heat conduction in solids
The non-Fourier effect in heat conduction is important in strong thermal environments and thermal shock problems. Generally, commercial FE codes are not available for analysis of non-Fourier heat conduction. In this study, a meshless formulation is presented for the analysis of the non-Fourier heat conduction in the materials. The formulation is based on the symmetric local weak form of the sec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008